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Abstract

Dispersion relations of thin parallel bimorph plates with polarized piezoceramics are obtained by using Hamilton�s
principle. The coupled variational equations for piezoceramic bimorph plates are derived with the thin plate theory and
the extension of electric potential in the thickness direction, which are valid for low frequency range. More specifically,
coupled differential equations as well as dispersion relations subject to homogeneous natural-type boundary conditions
on the two facing side-edges are derived for the cylindrical bending motions of both fully electroded and unelectroded
bimorph plates of which surfaces are free from applied traction for both cases; the derivations are made through the
expansions of mechanical displacements in the thickness co-ordinate with plane stress assumptions at major surfaces
in the manner of Mindlin and of electric potential with vanishing second order components of electric potentials at
major surfaces in the manner of Tiersten.

Relations between the deflection gradient of fully electroded bimorph plate and the induced electric current are
obtained. The complexity due to the additional inclusion of differential equations for the electric potential components
may be alleviated through the reductions of the coupled differential equations. As an illustrative example, dispersion
relations for the aforementioned four cases of bimorph plates composed of PZT5 are obtained. The dispersion curves
are depicted and compared each other, and some differences and similarities are discussed.
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1. Introduction

Piezoelectric sensors and actuators are widely used to control shapes of mechanical structures (Anderson
and Hagood, 1990; Rao and Sunar, 1994), to control vibrations (Chen et al., 1996) or to pick up vibratory
signals for the measurement of physical quantities (Seok et al., in press). The main advantage of piezoelec-
tric devices is that electric charge can be induced when the piezoelectric materials are mechanically de-
formed; on the contrary, mechanical stress and/or strain can be observed when an electric field is
applied. The most useful forms of these devices generally take the form of laminated or bimorph in
configuration.

A laminated piezoelectric plate is one of the most prominent applications of piezoelectric devices due to
its simplicity, durability, and manufacturability. A bimorph is a bilaminar plate, which is a form of the lam-
inated piezoelectric plate, consists of two piezoelectric plates attached each other. The bimorph plate, which
is of interest in this work, has crystallographic axes of both layers in the same orientations and electrodes
that are located on the middle surface of the two-layer plate and/or on its major surfaces. If an electric volt-
age were supplied to both layers, one layer would suffer elongation, while the other would suffer compres-
sion. This would result in cylindrical bending of the plate because both layers are attached and glued
together.

Tiersten (1993) derived a system of approximate equations for the extensional and flexural motion of
electroelastic plates subject to large electric field from the variational equation of electroelasticity. He used
a usual series expansion for mechanical displacements but adopted a special form of series expansion of
powers for electric potential in thickness co-ordinate to obtain approximate two-dimensional equations.
He also derived two-dimensional equations for the flexural vibrations of symmetric composite plates with
both unelectroded and electroded portions of piezoelectric actuators attached to the top and the bottom
surfaces (Tiersten, 1995). In this work, he used the same series expansions for both mechanical displace-
ments and electric potential as adopted in the previous paper to analyze cylindrical bending of a composite
plate caused by the applied voltage. Ricketts (1993) performed a dynamic analysis for the transverse vibra-
tions of composite piezoelectric plates. Although he obtained the eigensolutions of the plates using the Ray-
leigh method and the classical beam mode shapes, the approach was restricted to the assumed modal
behaviors of the beam characteristic functions.

Cheng et al. (1999) developed a method to obtain solution for a laminated piezoelectric plate under uni-
form normal tractions and electric displacements using a transfer matrix method and asymptotic expan-
sions in the framework of three-dimensional linear piezoelectricity theory. In this work, they investigated
the ratio of in-plane and transverse electric field components and found that the in-plane electric field com-
ponents can be significant under a certain conditions. At the same time, they also developed an asymptotic
technique for anisotropic inhomogeneous and laminated piezoelectric plates with three-dimensional linear
piezoelectricity theory (Cheng et al., 2000). Later, Lim and He (2001) analyzed the electromechanical re-
sponses of compositionally graded piezoelectric layers consisting of polycrystalline piezoelectric ceramics
polarized along the thickness direction. They considered two cases for layers (i) with electrodes and (ii)
without electrodes at major surfaces and obtained solutions for layers subjected to uniform mechanical
loads in the sense of Saint Venant. However, only static problems were treated in their works.

In order to give more physical meaning to the shapes of stress functions, Lee et al. (1987) adopted a sin-
usoidal thickness expansion instead of the series expansion in powers of thickness co-ordinate in deriving
the two-dimensional governing equations of piezoelectric crystal plates. Yong et al. (1993) developed a lam-
inated plate theory for thickness-shear vibrations. To obtain the two-dimensional equations of motion for
piezoelectric laminae in their work, the mechanical displacements and the electric potential were expanded
in the series of trigonometric functions along the thickness co-ordinate, which is the identical to the method
that Lee et al. (1987) used. Stewart and Yong (1994) later investigated acoustic wave propagation in multi-
layered anisotropic piezoelectric plates through the use of transfer matrix method. They obtained thickness
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modes of and dispersion relations of straight crested waves propagating through two and three layered
crystal plates with infinite planar dimensions. Rogacheva et al. (1998) analyzed the dynamic characteris-
tics of a piezoelectric laminate cantilever beam using the similar series expansion to the previous litera-
tures but with slightly different notations. They also performed an experiment for the verification of
their results.

Keuning (1971) derived a two-dimensional approximate equation for a bimorph shell and solved the
cylindrical bending problem by assuming the form of the solution based on the continuity conditions.
One of the potential limitations of his work is that his model is confined to static cases. Nevertheless, he
proved the validity of his assumptions by conducting an experiment with a good agreement to the theory
developed in his paper. Another analysis for the piezoceramic bimorph plate was conducted by Steel et al.
(1978). They investigated the features of electrical poling, hysteresis behavior, and transverse–longitudinal
mechanical strain under the quasistatic assumptions. Fernandes and Pouget (2003) proposed an approach
to piezoelectric bimorph plate using an expansion of the elastic displacement and electric potential through
the thickness co-ordinate, in which they account for a shear correction and a layerwise modeling of the elec-
tric potential. In addition to these papers, Smits and Choi (1991) derived the constituent equations of
piezoelectric heterogeneous bimorph by calculating the internal energy in thermodynamic equilibrium;
Low and Guo (1995) modeled a three-layer piezoelectric bimorph beam in order to explain its hysteretic
behavior; He et al. (2000) investigated three-dimensional electromechanical responses of an antiparallel
piezoelectric bimorph, which is composed of two oppositely polarized piezoelectric plates having 6mm

symmetry. They also used the transfer matrix method and asymptotic expansion, and showed that the only
unknown functions in the expression of solution are the displacements on the mid-plane of the bimorph.
Lim et al. (2001) later derived and solved a problem for three-dimensional parallel piezoelectric bimorph
having 6mm symmetry using the state space method and the asymptotic expansion technique.

While numerous piezoelectric bimorph plate theories have been developed to obtain mechanical and
electrical field quantities, most of these works are mainly for the static problems or for the dynamic prob-
lems with infinite planar dimensions or Levy-type boundary conditions, and the authors could not find any
work on the dispersion relations of flexural waves propagating through an infinitely long polarized
piezoceramic bimorph plate with two traction-free opposite edges in the open literature. It should be noted
that a kind of approximation procedure must be employed to solve the dynamic problems with mixed
natural- and constraint-type boundary conditions (Seok et al., 2004). Variational approximation procedure
(Tiersten, 1969), which is one of the well-known semi-analytical approximation procedures, is known to be
very accurate and simple, but requires obtaining the dispersion relations of the plate in prior to satisfying
the remaining equation variationally. In this work, a homogeneous dynamic problem for an infinitely long
polarized piezoceramic bimorph plate with two facing edges free is solved by using Hamilton�s principle
(Lanczos, 1949; Tiersten, 1969) and dispersion relations of the flexural waves propagating to the length
direction for the electroded and unelectroded bimorph plate on its major surfaces are derived in the frame-
work of two-dimensional elastoelectricity theory. With further assumptions on electric field quantities, it is
shown that reductions on the resulting dispersion relations can be successfully made to a good degree in low
frequency range.
2. Derivations of dispersion relations with quasistatic assumptions

2.1. Variational and constitutive equations for piezoceramic bimorph plates

It has been shown that the variational equation of linear piezoelectricity for infinitesimal strain in a vol-
ume V bounded by a surface S can be derived from Hamilton�s principle and may be written in the form
(Tiersten, 1969)
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where SN, SC respectively denote the portion of the surface on which natural- and constraint-type condi-
tions are prescribed, q represents the reference mass density, ekl, sij respectively represent the components of
strain and stress tensor, ni are the components of the unit outward normal vector of the surface, u, Di

respectively represent the electric potential and the electric displacement vector, �tj; �f j; �uj; �r respectively
stand for the prescribed traction vector, the prescribed body force density vector, the prescribed displace-
ment vector, the prescribed surface charge. Here we have introduced indicial notation and employed the
conventions that repeated tensor indices are to be summed, a comma followed by an index denotes partial
differential with respect to a space co-ordinate and a dot over a variable denotes partial differentiation with
respect to time.

The constitutive equations relating the elastic field tensors (sij and ekl) and the electric field vectors (Ek

and Di) can be expressed with the following pair of piezoelectric equations (Mason, 1964):
sij ¼ cEijklekl � ekijEk

Di ¼ eiklekl þ eSikEk

(
; ð2Þ
where the superscripts E and S respectively stand for the situation of constant electric field intensity and
strain; cijkl denote the elastic stiffnesses; eik with superscript are dielectric permittivities; ekij are piezoelectric
constants. Even though Eq. (2) is the only form of the constitutive equations which is of any value for the
unbounded piezoelectric medium, other three different forms of constitutive equations, 1 although exact,
are employed in approximations under certain limiting circumstances; thus any one of these three pairs
of constitutive equations are utilized in general when certain variables on the right-hand sides are approx-
imately zero (IEEE std., 1978). Since piezoceramic material is confined to have C6v (6mm) symmetry, the
constitutive equations in Eq. (2) may be written as a more convenient matrix form with the abbreviated
index notation (Mindlin, 1955)
s1
s2
s3
s4
s5
s6
D1

D2

D3

2
66666666666666664

3
77777777777777775

¼

cE11 cE12 cE13 0 0 0 0 0 �e31
cE12 cE11 cE13 0 0 0 0 0 �e31
cE13 cE13 cE33 0 0 0 0 0 �e33
0 0 0 cE44 0 0 0 �e15 0

0 0 0 0 cE44 0 �e15 0 0

0 0 0 0 0 c66 0 0 0

0 0 0 0 e15 0 eS11 0 0

0 0 0 e15 0 0 0 eS11 0

e31 e31 e33 0 0 0 0 0 eS33

2
66666666666666664

3
77777777777777775

e1
e2
e3
e4
e5
e6
E1

E2

E3

2
66666666666666664

3
77777777777777775

; ð3Þ
where
c66 ¼ ðc11 � c12Þ=2 ð4Þ
hese four sets of equations are not independent since the constants are related with each other through the coupled
dynamic relations.
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and the elastic properties of the piezoceramic material are polarized along x3 direction. Note that the num-
ber of independent material constants for the above mentioned class of material is 10.

The substitution of Eq. (3)3 into Eqs. (3)1 and (3)2 yields
sa � cE
�

13s3 ¼ cE
�

11ea þ cE
�

12e�a � e�31E3; ð5Þ

where
�a ¼ 1 for a ¼ 2; �a ¼ 2 for a ¼ 1; a ¼ 1; 2
and
cE
�

1a ¼ cE1a � cE
2

13=c
E
33; cE

�

13 ¼ cE13=c
E
33; e�31 ¼ e31 � cE13e33=c

E
33; m̂ ¼ cE

�

12=c
E�

11 : ð6Þ

With the plane stress assumptions along the thickness direction for thin plates, Eq. (5) only contains the
stress and strain components in planar directions. Nevertheless, each stress and strain function still has
three-dimensional dependencies. In addition, the strain–displacement relations, quasistatic electric field–
electric scalar potential relations
eij ¼ 1
2
ðui;j þ uj;iÞ; Ek ¼ �u;k ð7Þ
are required in this description.
As can be seen in Eqs. (5) and (6), the mechanical quantities (stress and strain) are coupled with the

mechanical quantities (electric field intensity and electric displacement) through the piezoelectric constants
eip, which will be explained in subsequent sections.

2.2. Dispersion relations of a fully electroded bimorph plate subject to a prescribed voltage

Consider a thin parallel bimorph plate with fully electroded major surfaces on which electric potentials
are prescribed. The electric potential u may be expanded in a series of powers of the thickness co-ordinate
x3 since the thickness is assumed to be much thinner than the other dimensions. A cross-sectional view of a
symmetric bimorph plate with fully electroded major surfaces is shown in Fig. 1. The plate is polarized
along the x3 axis, total thickness is 2h, total width is 2b, and infinitesimally thin electrodes are attached
to the top, bottom and inserted in the middle. Here, the superscripts in the middle denote the layers: (1)
for the upper layer and (2) for the lower layer.

Note that the electrodes are assumed to be infinitesimally thin, and thus the effects of the elastic stiffness
and inertia of the electrodes are ignored in this description. Since the bimorph plate is comprised of two
layers, the electric potential needs to be expanded separately for each layer. In addition, it is assumed that
the plate is fully covered with electrodes, so that the potential difference across the electrodes can be
independent of the position in the plane of plate even though this assumption can be relaxed with the spe-
cial expansion adopted here.
2b

Electrodes

2h
2x

(1)

(2)

3
x

Ve 0

ϕ

ϕ

Fig. 1. Cross-sectional view of a fully electroded bimorph plate.
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Expansions of the electrical potential functions along the thickness co-ordinate take the form (Seok,
2001)
u
ðmÞ

¼ uð0Þ
ðmÞ

þ x3
h
uð1Þ
ðmÞ

þ x3
h

x3
h
þ m̂

� �
uð2Þ
ðmÞ

; m̂ ¼ ð�1Þm; m ¼ 1; 2; ð8Þ
where only the coefficients of uð2Þ
ð1Þ

and uð2Þ
ð2Þ

are set to vanish at the surface of the plate so that those com-
ponents of potential may vary with position (Tiersten, 1993). This approach allows the variation of the sec-
ond order component in the electroded region as well as in the unelectroded region, so that the problem
may easily be extended to the higher order and/or partially electroded case if this expansion is employed.
Such an expansion can give proper differential equations for the partially electroded case in which the first
and the second order components of electric potential in the unelectroded region are the functions of posi-
tion in planar directions as well.

The substitution of Eq. (8) into the electric parts of variational equation, Eq. (1), and the integration of
the resulting functions over each layer, after some manipulations including the application of the planar
divergence theorem, may yield the electric part of the variational equation for the bimorph plate in the form
Z t

t0

dt
X2
m¼1

Z
Ŝ

Dð0Þ
a;a

ðmÞ

þ dð0Þ
3

ðmÞ !
duð0Þ
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þ 1

h
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ðmÞ
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3

ðmÞ

þ dð1Þ
3
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duð1Þ

ðmÞ
(""

þ 1

h2
Dð2Þ
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ðmÞ
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ðmÞ

�2Dð1Þ
3

ðmÞ

�m̂hDð0Þ
3
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duð2Þ
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)
dS

�
Z
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ðmÞ ds
1

h
�rð1Þ
ðmÞ

þna Dð1Þ
a

ðmÞ
 !

duð1Þ
ðmÞ

þ 1

h2
�rð2Þ
ðmÞ

þna Dð2Þ
a
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 !
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ðmÞ
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 !( )
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" #
þW

#
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where
W ¼
Z
Ŝ

uð0Þ
ð2Þ

� �uð0Þ
ð2Þ

 !
dD3

" #
x3¼0�

� uð0Þ
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dD3
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dðnÞ
3

ðmÞ

¼
½D3xn3�

h
0 for m ¼ 1

½D3xn3�
0
�h for m ¼ 2

( )
; n ¼ 0; 1 ð11Þ
and Ŝ denotes the major surfaces of the plate, and CN

ðmÞ
stands for the edges of the mth layer on which nat-

ural-types of boundary conditions are prescribed.
In addition, the superscript on the right-hand side of each symbol denotes the order of the component

expanded, and
DðnÞ
j

ð1Þ

¼
Z h

0

Djxn3 dx3; DðnÞ
j

ð2Þ

¼
Z 0

�h
Djxn3 dx3 ð12Þ
are defined as the nth order components of electric displacement.
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Using Eqs. (9) and (10), the charge equations of electrostatics with the prescribed electric potentials for
the two-dimensional bimorph plate may be obtained in the form
I

C
ðmÞna D

ð1Þ
a

ðmÞ

ds�
Z
S
Dð0Þ

3

ðmÞ

dS þ
Z
S
dð1Þ
3

ðmÞ

dS ¼ 0; ð13Þ

Dð2Þ
a;a

ðmÞ

þm̂hDð1Þ
a;a

ðmÞ

�2Dð1Þ
3

ðmÞ

�m̂hDð0Þ
3

ðmÞ

¼ 0; ð14Þ

uðnÞ
ðmÞ

¼ �uðnÞ
ðmÞ

; m ¼ 1; 2; n ¼ 0; 1; ð15Þ

where C

ðmÞ
is the prismatic contour of edges of the mth layer.

For convenience, let us set
�uð0Þ
ðmÞ

¼ 0; �uð1Þ
ðmÞ

¼ �m̂V e; ð16Þ

where Ve means the voltage and designates the potential difference between the top (or bottom) electrode
and the electrode in the middle.

Note that Eq. (13) contains integral conditions over the two pairs of electrodes, and simply express
algebraic equations. This is because the first component of the electric potential function is independ-
ent of position in the planar directions, so that the variation of that component should be pulled out
from the integration in the variational equation. Therefore, if voltage Ve is prescribed, the conditions
in Eq. (13) merely serve to determine the current through the electrodes (Tiersten, 1993). On the
other hand, if voltage Ve is not prescribed, these conditions are needed in order to obtain solutions
because the relations between deflection (or slope) and the induced voltage (or current) can be
obtained.

Considering the fact that the shear stress is not coupled to the electric quantities, the planar shear strain
for thin plates, with the strain–displacement relations, Eq. (7)1, leads to
e12 ¼
1

2

X1
n¼0

xn3ðu
ðnÞ
1;2 þ uðnÞ2;1Þ ¼

X1
n¼0

xn3e
ðnÞ
12 ; ð17Þ
where
eð0Þ12 ¼ 1

2
uð0Þ1;2 þ uð0Þ2;1

� �
; eð1Þ12 ¼ 1

2
uð1Þ1;2 þ uð1Þ2;1

� �
¼ �uð0Þ3;12: ð18Þ
The insertion of Eq. (17) in the constitutive equation for shear stress s12 yields
s12 ¼ 2c66e12 ¼ 2c66
1

2
uð0Þ1;2 þ uð0Þ2;1

� �
� x3u

ð0Þ
3;12

� �
: ð19Þ
Multiplying xn3 and integrating over the thickness, we obtain the nth order components of the shear stress in
the form
sðnÞ12 ¼
Z h

�h
s12x

ðnÞ
3 dx3 ¼ c66

xnþ1
3

nþ 1

� �h
�h

uð0Þ1;2 þ uð0Þ2;1

� �
� 2

xnþ2
3

nþ 2

� �h
�h

uð0Þ3;12

( )
: ð20Þ
Thus, the zeroth and the first component of the shear stress can readily be obtained through the use of Eq.
(19) as
sð0Þ12 ¼ 2c66h uð0Þ1;2 þ uð0Þ2;1

� �
; sð1Þ12 ¼ �2~Duð0Þ3;12; ð21Þ
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where
2 P
of ind
~D ¼ 2h3c66=3: ð22Þ

With the additional relation in the material with transversely isotropy, 2 Eq. (4), written in a different form
c66 ¼ cE
�

11ð1� m̂Þ=2: ð23Þ

Eq. (21)2 can simply be seen to result in
sð1Þ12 ¼ �D̂ð1� m̂Þuð0Þ3;12: ð24Þ
For the systematic development of the linear equations with electric quantities, it may be necessary to
couple the electric potentials expanded in series to the mechanical quantities. For the sake of brevity, series
expansions of mechanical stress and electric displacement resultants are developed and explained in Appen-
dix A.

The substitution of Eq. (8) into Eq. (7)2, and then into Eqs. (A.4) combined with Eq. (16), yields the
components of electric displacement resultants for the zeroth order
Dð0Þ
3

ðmÞ

¼ m̂eS
�

33V e þ e�31 heð0Þaa � m̂
h2

2
eð1Þaa

	 

ð25Þ
and for the first order
Dð1Þ
3

ðmÞ

¼ � eS
�

33

2
h V e þ

1

3
uð2Þ
ðmÞ

 !
� e�31 m̂

h2

2
eð0Þaa � h3

3
eð1Þaa

	 

ð26Þ
along with the electric field intensity components in the thickness co-ordinate
E3

ðmÞ
¼
X1
n¼0

xn3 E
ðnÞ
3

ðmÞ

; ð27Þ
where
Eð0Þ
3

ðmÞ

¼ m̂
h

V e � uð2Þ
ðmÞ

 !
; Eð1Þ

3

ðmÞ

¼ � 2

h2
uð2Þ
ðmÞ

: ð28Þ
The insertion of Eqs. (27), (28) in Eq. (A.3) combined with the two-dimensional strain–displacement rela-

tions and the use of symmetry of bimorph with uð2Þ ¼ uð2Þ
ðmÞ

for m = 1,2 yields the moment resultants in the
form
sð1Þa ¼ e�31hðV e þ uð2Þ=3Þ � D̂ðuð0Þ3;aðaÞ þ m̂uð0Þ3;�að�aÞÞ; ð29Þ
where
D̂ ¼ 2h3cE
�

11=3 ð30Þ

and we have introduced the series expansion of mechanical displacement along the thickness co-ordinate
(Seok et al., 2004)
uj ¼ uð0Þj þ uð1Þj x3 þ uð2Þj dj3x23: ð31Þ
iezoceramics used in this work have the symmetry of 6mm (Mason, 1964), hence exhibits transversely isotropy, where the number
ependent components in the elastic stiffness tensor is reduced to 5.
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The shear stress components can be obtained from the similar manner in the form
sð0Þ3a þ sð1Þ12;�a ¼ �D̂ uð0Þ3;aðaÞðaÞ þ ð2� m̂Þuð0Þ3;að�aÞð�aÞ

n o
þ h
3
~e�31u

ð2Þ
;a

� �
; ð32Þ
where we have used the relation sð0Þ3a ¼ sð1Þab;b, which is Eq. (17b) of Seok et al. (2004), instead of constitutive
equations for the thin plates and defined a new parameter
~e�31 ¼ e�31=D̂: ð33Þ

The substitution of Eqs. (29) and (21)2 into Eq. (18) of Seok et al. (2004)
sð1Þab;ab ¼ 2qh€w ð34Þ
and the replacement of uð0Þ3 by w for notational convenience yields the governing differential equation of
displacement coupled with electric potential in the from
ŵ;1111 þ 2ŵ;1122 þ ŵ;2222 � ĵ2x2ŵ� h
3
~e�31û

ð2Þ
;aa ¼ 0; ð35Þ
where
w ¼ ŵðxaÞeixt; uð2Þ ¼ ûð2ÞðxaÞeixt; ĵ2 ¼ 2qh=D̂: ð36Þ

Using Eqs. (14), (A.8) and (A.9), the differential equation for uð2Þ

ðmÞ
can be obtained in the form
uð2Þ
;aa

ðmÞ

� 10

h2
êS

�

33 u
ð2Þ

ðmÞ

þ5ê�31e
ð1Þ
aa ¼ 0; ð37Þ
where
êS
�

33 ¼ eS
�

33 eS
�

11

�
; ê�31 ¼ e�31=e

S�

11: ð38Þ
Through the use of Eqs. (A.2), (31) and the plane stress assumptions, Eq. (37) can be re-written in the form
uð2Þ
;aa �

10

h2
êS

�

33u
ð2Þ � 5ê�31w;aa ¼ 0: ð39Þ
The substitution of
½ŵ; ûð2Þ�T ¼ ½~w; ~uð2Þ�Te�iðnx1þgx2Þ ð40Þ

into Eqs. (35) and (39) enables to yield the dimensionless form of coupled homogeneous equation
�g2 þ �n
2 þ 10�̂e

S�

33 5êS
�

31ð�g2 þ �n
2Þ

�~e
S�

31ð�g2 þ �n
2Þ 3 �g4 þ 2�g2�n

2 þ �n
4 � �j2 �X

2
� �

2
4

3
5 ~uð2Þ

~w

" #
¼

0

0

� �
; ð41Þ
with the amplitude ratios
�~w ¼ �g2 þ �n
2 þ 10�̂e

S�

33;
�~u
ð2Þ ¼ �5êS

�

31ð�g2 þ �n
2Þ; ð42Þ
where the dimensionless parameters
�j ¼ ð2b=pÞ2ĵ�x; �̂e
S�

33 ¼ ð2bÞ2=ðphÞ2êS�33; �~e
�
31

2b
ph

~e�31; �g ¼ 2bg=p; �n ¼ 2bn=p;

�x ¼ p
ffiffiffiffiffiffiffiffiffiffiffi
c66=q

p
=ð2bÞ; �X ¼ x=�x; �xa ¼ pxa ð2bÞ= ; s ¼ �xt ð43Þ
have been newly introduced.
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Being cubic in �g2, the vanishing determinant of Eq. (41) gives three �g�s ð�gk; k ¼ 1; . . . ; 3Þ with three
amplitude ratios of ~uð2Þ vs. ~w (�~u

ð2Þ
k : �~wk; k ¼ 1; . . . ; 3) for a given �X and �n. After dispensing with the unsym-

metrical part of the solution for ŵ and ûð2Þ in Eq. (40), the solution functions become
ûð2Þð�xaÞ ¼
X3
k¼1

Ak
�~u
ð2Þ
k cosð�gk�x2Þe�i�n�x1 ; ð44Þ

ŵð�xaÞ ¼
X3
k¼1

Ak
�~wk cosð�gk�x2Þe�i�n�x1 ; ð45Þ
where Ak are constants to be determined and summation convention for the repeated indices has been sup-
pressed. In this equation the functions ûð2ÞðxaÞ, ŵðxaÞ have been directly replaced by new functions ûð2Þð�xaÞ,
ŵð�xaÞ, which for corresponding points xa and �xa have the same values as the former function and for the
sake of simplicity are denominated by the same symbols. This simplification will be understood throughout
this work. It should be noted that the symmetric excitation of a bimorph plate only permits the symmetric
modes for the flexural vibration with respect to the �x1 axis.

Three pairs of boundary conditions at the two side-edges required in deriving the dispersion relations are
vanishing electric displacement as well as vanishing moments and shear forces. The application of the solu-
tion functions in Eqs. (44) and (45) to the two boundary conditions with zero voltage on the electrodes
yields
X3
i¼1

Ai 3 �g2i þ m̂�n
2

� �
�~wi þ �~e

�
31
�~u
ð2Þ
i

n o
cosðp�gi=2Þ ¼ 0; ð46Þ

X3
i¼1

Ai 3 �g2i þ ð2� m̂Þ�n2
n o

�gi�~wi þ �~e
�
31ð�g2i þ �n

2Þ�gi�~u
ð2Þ
i

h i
sinðp�gi=2Þ ¼ 0; ð47Þ

X3
i¼1

Ai
�~e
�
31�gi�~u

ð2Þ
i sinðp�gi=2Þ ¼ 0: ð48Þ
Eqs. (46)–(48) compose a 3 by 3 homogeneous matrix equation with one unknown solution vector com-
posed of three A�s as its components. The vanishing determinant gives the dispersion relations, which yields
the solution functions, with the inclusion of N dispersion branches, in the form
ŵð�xaÞ ¼
XN
i¼1

X3
j¼1

X2
k¼1

Bik
�~wij

�Aij cosð�gij�x2Þ sinf�ni�x1 þ ðk � 1Þp=2g; ð49Þ

ûð2Þð�xaÞ ¼
XN
i¼1

X3
j¼1

X2
k¼1

Bik
�~u
ð2Þ
ij
�Aij cosð�gij�x2Þ sinf�ni�x1 þ ðk � 1Þp=2g; ð50Þ
where
F ij ¼ F jð�niÞ; F ¼ �A; �~w; �g; and �~u
ð2Þ
; n ¼ 1; 2 ð51Þ
and Bik are constants to be determined.
The relations between the mechanical quantities and the electric potential, which is prescribed on the

electrodes attached to the major surfaces and inserted in the middle plane, have been derived in this section.
However, if the electric potentials are not prescribed on the electrodes, the relations between the deforma-
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tion and the induced electrical quantities should be obtained so as to measure the deformation of the plate
quantitatively, which is derived and explained in Appendix B.

2.3. Dispersion relations of a unelectroded bimorph plate

For the unelectroded plate, a part of the electric boundary conditions, which is denoted as W in Eq. (9),
should be replaced by
W ¼
Z
Ŝ
dS �r

ð1Þ
þD3

ð1Þ
� �

x3¼h

d uð0Þ
ð1Þ

þuð1Þ
ð1Þ

 !
þ �r

ð1Þ
�D3

ð1Þ
� �

x3¼0þ
duð0Þ

ð1Þ
"

þ �r
ð2Þ
�D3

ð2Þ
� �

x3¼�h

d uð0Þ
ð2Þ

�uð1Þ
ð2Þ

 !
þ �r

ð2Þ
þD3

ð2Þ
� �

x3¼0�
duð0Þ

ð2Þ
#
: ð52Þ
Furthermore, the integral conditions in Eq. (13) for the fully electroded case must be changed to
Dð1Þ
a;a

ðmÞ

�Dð0Þ
3

ðmÞ

¼ 0; ð53Þ
where the condition dð1Þ
3

ðmÞ

¼ 0 has already been introduced since D3(x3 = ±h) = 0 and the central electrode is
assumed to be earthed. The other two differential equations required in this description are Eqs. (14) and
(34).

Using Eqs. (A.4) together with Eq. (8), the electric displacement components in the x3 direction can be
obtained in the form
Dð0Þ
3

ðmÞ

¼ �eS
�

33 u
ð1Þ

ðmÞ

�m̂
e�31h

2

2
eð1Þaa ; ð54Þ

Dð1Þ
3

ðmÞ

¼ eS
�

33h
2

m̂uð1Þ
ðmÞ

� 1

3
uð2Þ
ðmÞ

 !
þ e�31h

3

3
eð1Þaa ; ð55Þ
since
E3

ðmÞ
¼ � 1

h
uð1Þ
ðmÞ

þm̂uð2Þ
ðmÞ

 !
� 2

x3
h
uð2Þ
ðmÞ

: ð56Þ
Through the use of Eqs. (8) and (A.8), the nth order components of electric displacement in the plane direc-
tions can be obtained in the form
DðnÞ
a

ðmÞ

¼ m̂ uð1Þ
;a

ðmÞ

þm̂uð2Þ
;a

ðmÞ
 !

ð�m̂hÞnþ2

nþ 2
þ 1

h
uð2Þ

;a

ðmÞ

� ð�m̂hÞnþ3

nþ 3

( )
; n ¼ 0; . . . ; 2: ð57Þ
With the aid of Eqs. (56) and (A.3), the moment resultants can be obtained as
sð1Þa ¼
X2
m¼1

sð1Þa

ðmÞ

¼ 2

3
h3cE

�

11ðeð1Þa þ m̂eð1Þ�a Þ þ h
2
e�31 uð1Þ

ð1Þ

�uð1Þ
ð2Þ

 !
þ 1

3
uð2Þ
ð1Þ

�uð2Þ
ð2Þ

 !( )
: ð58Þ
Through the use of the symmetry of the bimorph plate with respect to the middle plane, i.e., uð1Þ
ð2Þ

¼ �uð1Þ
ð1Þ

,

uð2Þ
ð2Þ

¼ uð2Þ
ð1Þ

, Eq. (53), combined with Eq. (57), may lead to
uð1Þ
;aa �

1

4
uð2Þ

;aa �
3

h2
êS

�

33u
ð1Þ � 3

2
ê�31w;aa ¼ 0: ð59Þ
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Similarly, Eq. (14) yields the second differential equation for the electric potential components coupled with
the mechanical displacement of the plate in the form
5

2
uð1Þ

;aa � uð2Þ
;aa þ

10

h2
êS

�

33u
ð2Þ þ 5ê�31w;aa ¼ 0: ð60Þ
The third differential equation can be easily obtained from Eqs. (24), (34) and (58), after ignoring all body
forces and moments, with the result
w;1111 þ 2w;1122 þ w;2222 þ ĵ2€w� h
3
~e�31ð3uð1Þ

;aa þ uð2Þ
;aaÞ ¼ 0: ð61Þ
By letting the solutions of the three coupled differential equations (59)–(61) as
uðnÞ ¼ ~uðnÞeiðxt�nx1�gx2Þ; n ¼ 1; 2; ð62Þ

w ¼ ~weiðxt�nx1�gx2Þ ð63Þ

a set of homogeneous equations for the three coupled quantities can be obtained as the following matrix
equation with dimensionless quantities defined in Eq. (43):
10�̂e
S�

33 þ 10
3
ð�g2 þ �n

2Þ � 5
6
ð�g2 þ �n

2Þ �5ê�31ð�g2 þ �n
2Þ

5
2
ð�g2 þ �n

2Þ � 10�̂e
S�

33 þ 5
2
ð�g2 þ �n

2Þ
n o

5ê�31ð�g2 þ �n
2Þ

�~e
�
31ð�g2 þ �n

2Þ 1
3
~�e
�
31ð�g2 þ �n

2Þ �g4 þ 2�n
2
�g2 þ �n

4 � �j2 �X
2

2
6664

3
7775

~uð1Þ

~uð2Þ

~w

2
64

3
75 ¼

0

0

0

2
64
3
75: ð64Þ
Being quartic in �g2, the vanishing determinant of Eq. (64) yields four �g�s (�gk; k ¼ 1; . . . ; 4) and the ampli-
tude ratios associated with ~uð1Þ, ~uð2Þ, and ~w (�~u

ð1Þ
k : �~u

ð2Þ
k : �~wk; k ¼ 1; . . . ; 4) in the way explained in the previ-

ous section for a given �X and �n. If the matrix in Eq. (64) is denoted by M with its components Mij,
i, j = 1, . . ., 3, one obtains
�~u
ð1Þ
k ¼ Lc1ð�gkÞ; �~u

ð2Þ
k ¼ Lc2ð�gkÞ; �~wk ¼ Lc3ð�gkÞ; k ¼ 1; . . . ; 4; ð65Þ
where
Lpqð�gkÞ ¼ coffMpqð�g ¼ �gkÞg; p; q ¼ 1; . . . ; 3; k ¼ 1; . . . ; 4 ð66Þ

and c can be any number between 1 and 3. In Eq. (66) cof{ } represents a cofactor of the argument matrix.
Hence, the solution functions with the dimensionless arguments may be represented as
uðnÞð�xa; sÞ ¼
X4
k¼1

Ak
�~u
ðnÞ
k cosð�gk�x2Þeið

�Xs��n�x1Þ; ð67Þ

wð�xa; sÞ ¼
X4
k¼1

Ak
�~wk cosð�gk�x2Þeið

�Xs��n�x1Þ; ð68Þ
where �~u
ðnÞ
k , �~wk are amplitude ratios obtained from Eq. (64) and Ak are unknown amplitudes to be deter-

mined. It should also be noticed that the functions u(2)(xa, t), w(xa, t) were directly replaced by new func-
tions uð2Þð�xa; sÞ, wð�xa; sÞ, which for corresponding points (xa, t) and ð�xa; sÞ have the same values as the
former function and are denominated by the same symbols for convenience. This simplification will also
be understood in this section.

The application of Eqs. (67) and (68) to the homogeneous constraint-type edge conditions gives the fol-
lowing four homogeneous equations composing a 4 by 4 matrix equation, which gives dispersion relations
and amplitude ratios for the four A�s:



J. Seok / International Journal of Solids and Structures 42 (2005) 1957–1981 1969
X4
i¼1

Ai �g2i þ m̂�n
2

� �
�~wi þ �~e

�
31 3�~u

ð1Þ
i þ �~u

ð2Þ
i

�� .
3

n o
cosðp�gi=2Þ ¼ 0; ð69Þ

X4
i¼1

Ai �g2i þ ð2� m̂Þ�n2
n o

�gi�~wi þ �~e
�
31�gi 3�~u

ð1Þ
i þ �~u

ð2Þ
i

�� .
3

h i
sinðp�gi=2Þ ¼ 0; ð70Þ

X4
i¼1

Ai�gi�~u
ð1Þ
i sinðp�gi=2Þ ¼ 0; ð71Þ

X4
i¼1

Ai�gi�~u
ð2Þ
i sinðp�gi=2Þ ¼ 0: ð72Þ
Finally the solution functions including N dispersion branches can be represented in the form
uðnÞð�xa; sÞ ¼
XN
j¼1

X4
k¼1

X2
l¼1

Bjl
�Ajk

�~u
ðnÞ
jk cosð�gjk�x2Þ sinf�nj�x1 þ ðl� 1Þp=2gei�Xs; ð73Þ

wð�xa; sÞ ¼
XN
j¼1

X4
k¼1

X2
l¼1

BjlAjk
�~wjk cosð�gjk�x2Þ sinf�nj�x1 þ ðl� 1Þp=2gei�Xs; ð74Þ
where Bik are constants to be determined.
3. Reductions of the dispersion relations with the assumptions on electric field quantities

The inclusion of the differential equations for the electric potential components increases the number of
functions being evaluated and the matrix size for the analysis of the bounded plate. One may have difficul-
ties in computation if the system has too many components to analyze, hence, requires too many unknown
amplitudes to solve. That is because the largest imaginary wave number actually governs the accuracy of
the calculated results. Thus, further reduction of the governing equations may be necessary, if possible,
for the system interested in this work. This can be done if some small errors produced by neglecting the
variations of the electric field intensity along the position in the plane of the plate are permitted. In the
two subsequent sections, the procedures to reduce the differential equations for the components of electric
potential to the degenerate ones are explained for fully electroded and unelectroded cases separately.

3.1. Reduction of the fully electroded bimorph plate equation

First consider the assumptions that the electrodes fully cover the surfaces of the entire plate with a pre-
scribed voltage and the plate is thin enough to allow for the ignorance of the variations of electric field
intensity in the planar directions, i.e., Ea = 0, throughout the plate. With these assumptions, the constitu-
tive equations simply give Da = 0 for both layers. Then all that remains in Eq. (14) may become
�m̂hDð0Þ
3

ðmÞ

�2Dð1Þ
3

ðmÞ

¼ 0 ð75Þ

together with
u
ðmÞ

¼ �m̂
x3
h
V e þ

x3
h

x3
h
þ m̂

� �
uð2Þ
ðmÞ

; ð76Þ
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which can be obtained from Eqs. (8), (15) and (16). The substitution of Eqs. (25) and (26) into Eq. (75) gives
the second components of potential functions in the form
uð2Þ
ðmÞ

¼ h2e�31e
ð1Þ
aa =ð2eS

�

33Þ; m ¼ 1; 2; ð77Þ

as was expected by virtue of the symmetry of the bimorph plate. Hence the substitution of Eq. (77) into Eq.
(8) and then into Eqs. (27) and (28) yields
u
ðmÞ

¼ �m̂
x3
h
V e þ

x3
h

x3
h
þ m̂

� � h2e�31
2eS

�
33

eð1Þaa ; ð78Þ

E3

ðmÞ
¼ m̂

V e

h
� he�31

2eS
�

33

eð1Þaa

	 

� x3

e�31
eS

�
33

eð1Þaa : ð79Þ
The substitution of Eqs. (78) and (79) into Eq. (A.1), and the rearrangement of the resulting equations
yields
sð0Þa ¼
X2
m¼1

sð0Þa

ðmÞ

¼ 2hcE
�

11 eð0Þa þ m̂eð0Þ�a

� �
; ð80Þ

sð1Þa ¼
X2
m¼1

sð1Þa

ðmÞ

¼ K̂V e þ �̂D eð1Þa þ �̂með1Þ�a

� �
; ð81Þ
where
�̂D ¼ 2h3

3
cE

�

11 þ
e�

2

31

4eS
�

33

 !
; �̂m ¼ 4cE

�
11 m̂þ e�

2

31=e
S�
33

4cE
�

11 þ e�231=e
S�
33

ð82Þ
and
K̂ ¼ e�31h: ð83Þ

Note that �̂D and �̂m defined in Eq. (82) represents the effective flexural rigidity and the effective Poisson�s ratio
for the piezoceramic bimorph plate, respectively, and gives the same values as those obtained by Rogacheva
(1994) with a different pair of constitutive equations and by Seok et al. (in press) with a different type of
expansions of electric potentials. The same results can be obtained by expanding the electric potential with
simple powers along the thickness co-ordinate, in which all the components of electric potential do not vary
throughout the plane.

Introducing the strain–displacement relations into Eq. (81), the moments and the shear force resultants
can be obtained in the form
sð1Þa ¼ K̂V e � �̂Dðw;aðaÞ þ �̂mw;�að�aÞÞ; ð84Þ

sð0Þ3a þ sð1Þ12;�a ¼ � �̂Dfw;aðaÞðaÞ þ ð2r̂ � �̂mÞw;að�aÞð�aÞg; ð85Þ
where
r̂ ¼ 2~D= �̂Dþ �̂m: ð86Þ

Hence, the displacement equation of motion of the bimorph plate under the aforementioned conditions
becomes
w;1111 þ 2r̂w;1122 þ w;2222 þ �̂j
2
€w ¼ 0; �̂j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qh= �̂D

q
: ð87Þ
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Using Eqs. (84) and (85), the variational equation of the bimorph plate can be expressed in terms of the
displacement along the x3 direction and its derivatives.

The procedure to obtain the dispersion relations of this electrically simplified case is the same as that of
the pure mechanical case. The differences exist only in the flexural rigidity and Poisson�s ratio, which should
be replaced with the effective ones defined in Eq. (82). For a low frequency range, the complex branches are
not important because the imaginary number of the nearest complex branch to the origin is still large en-
ough compared to the second imaginary branch, which is almost a straight line for the low frequency range.
Although the L�Hospital theorem leads us to the limiting case solutions when the frequency approaches
zero, the analytical derivation is rather cumbersome. However, using the binomial expansion, the limiting
case for the imaginary branch can be calculated in a simple form for the symmetric modes. Note that only a
part of the solutions symmetric with respect to the x2 axis is of interest because only the symmetric modes
are excited and suitable in the description of the bimorph plate employed in this work.

3.2. Reduction of the unelectroded bimorph plate equation

As a second case for the reduction, consider a unelectroded plate, which is thin enough to allow no var-
iations along the x3 axis. Since it is assumed that there is no charge just outside the body, the external elec-
tric intensity field is also treated to vanish. Therefore, it can be assumed that inside the plate for the thin
piezoceramic plate, we have
D3 ¼ 0; Ea ¼ 0: ð88Þ

From the two-dimensional constitutive equations and the thin plate assumptions for electric quantities de-
scribed in Eq. (88), the relation between the electric field intensity along the thickness direction and planar
strains
E3 ¼ �e�31=e
S�

33eaa ð89Þ

can be obtained. Through the use of Eqs. (A.4) and (75), one may simply obtain the following
equations:
eS
�

33 E
ðnÞ
3

ðmÞ

þe�31e
ðnÞ
aa ¼ 0; EðnÞ

3

ðmÞ

¼ � e�31
eS

�
33

eðnÞaa ; n ¼ 0; 1: ð90Þ
With the aid of the assumption eð0Þaa ¼ 0 for a thin bimorph plate, Eqs. (32), (34), (A.3) and (90) can
give
w;1111 þ 2 r
^
w;1122 þ w;2222 þ j

^2
€w ¼ 0 ð91Þ
along with the two-dimensional constitutive equations
sð1Þa ¼ D
^

ðeð1Þa þ m
^
eð1Þ�a Þ ¼ �D

^

ðw;aðaÞ þ m
^
w;�að�aÞÞ; ð92Þ

sð0Þ3a þ sð1Þ12;�a ¼ �D
^

fw;aðaÞðaÞ þ ð2 r
^� m

^Þw;að�aÞð�aÞg; ð93Þ
where
D
^

¼ 2

3
h3 cE

�

11 þ
e�

2

31

eS
�

33

 !
; m

^ ¼ ðcE�
11mþ e�

2

31=e
S�
33Þ

ðcE�
11 þ e�231=e

S�
33Þ

; r
^ ¼ 2~D=D

^

þ m
^
; j

^ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qh=D

^
q

: ð94Þ
Note that D
^

and m
^
are the effective flexural rigidity and the effective Poisson�s ratio for the unelectroded thin

plate, respectively. The electric potential components can also be obtained successfully in the form
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Eð0Þ
3

ðmÞ

¼ � 1

h
uð1Þ
ðmÞ

þm̂uð2Þ
ðmÞ

 !
¼ � e�31

eS
�

33

eð0Þaa ¼ 0; ð95Þ

Eð1Þ
3

ðmÞ

¼ � 2

h2
uð2Þ
ðmÞ

¼ � e�31
eS

�
33

eð1Þaa ð96Þ
along with the electric potential components in the form
uðnÞ
ðmÞ

¼ ð�m̂Þn h
2

2

e�31
eS

�
33

eð1Þaa ; n ¼ 1; 2: ð97Þ
4. Illustrative example: fully electroded and unelectroded bimorph plates made of PZT-5, b/h = 2

As an illustrative example of the resulting equations derived in the preceding sections, an infinitely long
bimorph plate is considered. The plate is made of PZT-5 (Berlincourt et al., 1964) and have two facing
edges free with width to height ratio b/h = 2. The mechanical and piezoelectrical properties of PZT-5
are shown in Table 1. Note that since the intrinsic modes of the rectangular bimorph plate induced by
the electric field applied to the major surfaces are symmetric with respect to the x1 axis, dispersion relations
for anti-symmetric modes naturally vanish; only symmetric modes exist.

The dispersion relations for the bimorph plate with electrodes that entirely cover the major surfaces, with
the quantity 3D̂=2h3 ¼ 6:965� 1011 Pa and effective Poisson�s ratio m̂ ¼ 0:351, are obtained for the fre-
quency and wave number ranges of interest here. The dispersion curves shown in Fig. 2 are drawn with
the data obtained from the computer program using a symbolic programming language, Maple (1997).
Computations have been made separately with quadruple precision to reduce possible errors originated
from the large non-propagating wave numbers. In this figure, the dimensionless frequency �X is plotted
against Rð�nÞ and Ið�nÞ over a range up to a unity near �X ¼ 0. Here, Rð�nÞ and Ið�nÞ represents the real
and the imaginary part of the dimensionless wave number �n, respectively. It may be informative if real
dimensions are taken for the calculation to give physical insights. For the bimorph plate with thickness
h = 10lm as an example, the upper limit of the figure �X ¼ 1 corresponds to x = 1.34 · 108rad/s, or equiv-
1
dimensional piezoelectric constants of PZT-5 (taken from Berlincourt et al., 1964)

ty PZT-5 Unit

12.1 · 1010 Pa
7.54 · 1010 Pa
7.52 · 1010 Pa
11.1 · 1010 Pa
2.11 · 1010 Pa
2.26 · 1010 Pa
�5.4 C/m2

15.8 C/m2

12.3 C/m2

916 –
830 –
8.85 · 10�12 F/m
7.75 · 103 kg/m3
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Fig. 2. Dispersion relations for symmetric modes of a fully electroded bimorph plate.
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alently, 21.3MHz, which is sufficiently high for the flexural vibrations of bimorph plates under considera-
tion. As can be expected, the complex wave numbers appear in pairs, which are known to be associated with
edge vibrations in bounded plate (Mindlin, 1960). Observing the shapes of the dispersion curves, they are
quite similar to those of purely mechanical case (Seok et al., 2004). There are two branches dominating the
dynamics of the plate for the plates having large length to width ratio; one is real and the other is imaginary
close to the origin. The second imaginary branch needs also to be included, especially for the plate that has
free corners thus requires to satisfy Kirchhoff corner conditions, in order to satisfy boundary conditions
given to other edges as much as possible. Special attention needs to be taken for the complex wave branches
since the complex conjugate must also be included. In that case, the magnitudes associated with a complex
pair are not independent; hence their variations are not. However, the real and the imaginary part of the
wave number can vary freely.

The dispersion relations for the bimorph plate without electrodes on the major surfaces are also obtained
and depicted in Fig. 3. For the low frequency range ð�X � 1Þ, the dispersion curves are similar to those of
the fully electroded case. However, the second imaginary branch locates higher than that of the fully elect-
roded case.

The dispersion curves for the fully electroded bimorph plate using the reduced equation (82) developed
in Section 3.1 are shown in Fig. 4, in which effective Poisson�s ratio �̂m ¼ 0:408 and normalized flexural rigid-
ity �̂D=D̂ ¼ 1:097 are obtained for PZT-5. Comparing the dispersion curves with those of the fully electroded
bimorph plate within a low frequency range, the deviations between the two branches of a kind are pretty
small. Hence, to reduce the matrix size, this reduced equation with the effective flexural rigidity and Pois-
son�s ratio can be employed for the approximations in a low frequency range.

The dispersion curves, with effective Poisson�s ratio m
^ ¼ 0:532 and normalized flexural rigidity

D
^

=D̂ ¼ 1:388, can be drawn by inserting the solution functions obtained from the governing differential
equation, Eq. (91), which are shown in Fig. 5 based on Eqs. (92) and (93).

Comparing the dispersion curves depicted in Fig. 5 to that with the non-reduced differential equations
(Fig. 3) it can be found that the two figures are almost identical. Hence, even in the higher range of the
frequency, the results with the reduced equation would be very close to those with fully coupled
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equations, which could validate the usage of the reduced equations for a relatively wider frequency
range.
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Fig. 4. Dispersion curves for symmetric modes of a fully electroded bimorph plate with the reduction of equations.
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Fig. 3. Dispersion relations for symmetric modes of a unelectroded bimorph plate.
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Fig. 5. Dispersion curves for symmetric modes of a unelectroded bimorph plate with the reduction of equations.
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5. Conclusions

A procedure to obtain the dispersion relations of bimorph plates with two facing edges free for fully
electroded and unelectroded major surfaces has been proposed. Coupled differential equations as well as
dispersion relations subject to homogeneous constraint-type boundary conditions on the two facing side-
edges have been derived for both fully electroded and unelectroded bimorph plates through the expansions
of electric potential in the thickness co-ordinate with vanishing second order components of electric poten-
tials at major surfaces in the manner of Tiersten. Successive reduction procedures for both fully electroded
and unelectroded cases have also been developed.

Dispersion curves for the aforementioned four cases have been depicted for the bimorph plate of PZT-5
with a fixed width to height ratio b/h = 2. Comparisons have been made and have shown that the reduc-
tions can be successfully employed in the variational approximation procedure in a good accuracy for a
relatively wider frequency range.
Appendix A. Series expansions of mechanical stress and electric displacement resultants

For the purpose of obtaining the two-dimensional constitutive equations of the thin bilayered bimorph
plate, integrating Eq. (5) over the thickness of each layer after multiplying xn3, with plane stress assumptions,
we obtain
sðnÞa

ðmÞ

¼ m̂
X1
k¼0

cE
�

11

ð�m̂hÞnþkþ1

ðnþ k þ 1Þ ðe
ðkÞ
a þ meðkÞ�a Þ � e�31

ð�m̂hÞnþkþ1

ðnþ k þ 1Þ EðkÞ
3

ðmÞ( )
; ðA:1Þ
where m = 1,2, n = 0,1, and the continuity conditions of eab across the middle plane have already been ta-
ken into consideration. In Eq. (A.1) we have also introduced the series expansion of elastic strain along the
thickness co-ordinate (Seok et al., 2004)
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eab ¼
X1
n¼0

eðnÞab x
n
3: ðA:2Þ
Note that the stress continuity conditions are satisfied trivially due to the plane stress assumptions of
s3j = 0. Furthermore, due to the plane stress assumptions for free thickness strains, the stress components
in x3 direction may be ignored.

For the future usage, it is profitable to write the normal stress resultants for the first order: 3
sð1Þa

ðmÞ

¼ �cE
�

11 m̂
h2

2
eð0Þa þ með0Þ�a

� �
� h3

3
ðeð1Þa þ með1Þ�a Þ

� �
þ e�31 m̂

h2

2
Eð0Þ
3

ðmÞ

� h3

3
Eð1Þ
3

ðmÞ !
: ðA:3Þ
The nth order components of electric displacement in the x3 direction can be calculated, from Eq. (12) with
the aid of Eq. (3) along with the plane stress assumptions, in the form
DðnÞ
3

ð1Þ

¼
Z h

0þ
D3

ð1Þ
xn3 dx3

¼ eS
�

33

hnþ1

ðnþ 1Þ E
ð0Þ
3

ð1Þ

þ hnþ2

ðnþ 2Þ E
ð1Þ
3

ð1Þ( )
þ e�31

hnþ1

ðnþ 1Þ ðe
ð0Þ
1 þ eð0Þ2 Þ þ hnþ2

ðnþ 2Þ ðe
ð1Þ
1 þ eð1Þ2 Þ

� �
;

DðnÞ
3

ð2Þ

¼
Z 0�

�h
D3

ð2Þ
xn3 dx3

¼ �eS
�

33

ð�hÞnþ1

ðnþ 1Þ Eð0Þ
3 þ
ð2Þ ð�hÞnþ2

ðnþ 2Þ Eð0Þ
3

ð2Þ( )
� e�31

ð�hÞnþ1

ðnþ 1Þ ðe
ð0Þ
1 þ eð0Þ2 Þ þ ð�hÞnþ2

ðnþ 2Þ ðe
ð1Þ
1 þ eð1Þ2 Þ

( )
; ðA:4Þ
where the two-dimensional electric permittivity
eS
�

33 ¼ eS33 þ e233=c
E
33 ðA:5Þ
has been newly introduced. Since all the shear stresses on the major surfaces of the plate have been ne-
glected on account of the plane stress assumptions, the substitution of Eqs. (3)4 and (3)5 into Eqs. (3)7
and (3)8 yields
Da ¼ eS
�

11Ea; a ¼ 1; 2; ðA:6Þ

where
eS
�

11 ¼ eS11 � e215=c
E
44: ðA:7Þ
Multiplying Eq. (A.6) by xn3 and integrating the resulting equation over the thickness of each layer, the nth
order components of electric displacement in the planar directions can be obtained in the form
DðnÞ
a

ðmÞ

¼ �m̂eS
�

11

X2
k¼0

ð�m̂hÞnþkþ1

nþ k þ 1
EðkÞ
a

ðmÞ

; m ¼ 1; 2; n ¼ 0; . . . ; 2; ðA:8Þ
where
ince the bimorph plate produces the flexural motion only, the variational equation for the out-of-plane motion is necessary and
nt in this description.
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Eð0Þ
a

ðmÞ

¼ 0; Eð1Þ
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� � m̂
h
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ðmÞ

; Eð2Þ
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� � 1

h2
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;a

ðmÞ

; m ¼ 1; 2: ðA:9Þ
Appendix B. Relations between electric current and displacement gradient for a fully electroded bimorph

plate subject to a prescribed surface charge

Consider a bimorph plate with a measurement set-up as depicted in Fig. 6. Although two different
gauges may be used for the two different layers in this configuration, both readings would indicate the same
absolute values due to the symmetry of the geometry and material properties.

The electric part of the variational equation of the fully electroded bimorph plate used for the purpose of
sensing the vibrations may take the form
Z t

t0

dt
X2
m¼1

Z
Ŝ

Dð0Þ
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ðmÞ !
duð0Þ

ðmÞ
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where
dð0Þ
3

ð1Þ

¼ ½D3�h0þ ; dð0Þ
3

ð2Þ

¼ ½D3�0
�

�h: ðB:2Þ

Keeping in mind the fact that the first order components of the electric potential do not vary with posi-

tion, the differential and the integral equations can be obtained from the variational equation in the form
I
C
ðmÞna D

ð0Þ
a

ðmÞ

dsþ
Z
Ŝ
dð0Þ
3

ðmÞ

dS ¼ 0; ðB:3Þ
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Fig. 6. Schematic view of a sensing bimorph plate with its co-ordinate system.
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�2Dð1Þ
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�m̂hDð0Þ
3
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Similarly, the boundary part of Eq. (B.1) gives the following integral form of boundary conditions:
Z
Ŝ
fD3ðhÞ � D3ð0þÞgdS ¼

Z
Ŝ
�f�rðhÞ þ �rð0þÞgdS; ðB:6Þ

Z
Ŝ
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Z
Ŝ
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Z
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D3ðhÞdS ¼ �

Z
Ŝ
�rðhÞdS; ðB:8Þ

Z
Ŝ
D3ð�hÞdS ¼

Z
Ŝ
�rð�hÞdS; ðB:9Þ
where the symbols in the parenthesis represent the position on the x3 axis.
Referring to Eq. (A.8), the electric displacement components can be expressed as functions of electric

potential components in the form
Dð0Þ
a

ðmÞ

¼ h
6
eS
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11 u
ð2Þ
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ðmÞ

; Dð1Þ
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¼ h3

20
eS

�

11 u
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Hence, the two differential equations obtained from the mechanical and electrical parts of the variational
equation can be given by the same form as those obtained under the prescribed voltage, Eqs. (35) and (39),
since the first order component of the electric potential for each layer is independent of the position.

From the first integral equation, Eq. (B.3), the relations of the x3 directional electric displacement com-

ponents between the two electrodes can be obtained if Dð0Þ
a

ðmÞ

are given from the electric continuity condition

na ½
�
Dð0Þ

a

ð2Þ

�
�
¼ 0 with the convention ½

�
a �

�
¼ aþ � a�. For the case when the dielectric constant in the

material just outside the bimorph plate is much larger than that in the bimorph plate, one may have the
relations
Z

Ŝ
D3ðhÞdS ¼
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If the total amount of prescribed surface charge on the middle electrode is denoted as 2�q, Eqs. (B.11) and
(B.12) give the following relations:
Z

Ŝ
�rð0þÞdS ¼

Z
Ŝ
�rð0�ÞdS ¼ þ�q; ðB:13Þ

Z
Ŝ
�rðhÞdS ¼

Z
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Finally Eqs. (B.11)–(B.14) give the third term in integral equation (B.4) with the result
Z
S
dð1Þ
3

ðmÞ

dS ¼ �m̂h�q: ðB:15Þ
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Through the use of Eq. (A.4), the first term in integral equation (B.4) can be transformed into more con-
venient form with the components of the electrical potential and the strain, which has the same form as Eq.
(54)
Dð0Þ
3

ðmÞ

¼ �eS
�

33 u
ð1Þ

ðmÞ

�m̂e�31h
2eð1Þaa =2: ðB:16Þ
The insertion of Eq. (B.16) in integral equation (B.4), and then the introduction of the strain–displacement
relations finally yields the relations between the electrical potential, displacement, and the prescribed total
surface charge with the result
eS
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33

Z
S
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ðmÞ

dS � m̂
e�31h

2

2

Z
S
w;aa dS þ h�q
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The rearrangement of Eq. (B.17) for uð1Þ
ðmÞ

yields
uð1Þ
ðmÞ

¼ m̂
eS

�
33S

h�qþ e�31h
2

2

Z
S
w;aa dS

	 

: ðB:18Þ
These equations state that the resulting voltage or charge induced by the deformation of the plate can be
obtained with given electrical and geometrical quantities when either charge or voltage is prescribed, or the
relation between the two is known. The rearrangement of Eq. (B.18), after the differentiation with time,
yields the current equation in the form
I
ðmÞ

¼ _�q ¼ ix
m̂h

eS
�

33S u
ð1Þ

ðmÞ

�m̂
e�31h

2

2

Z
S
w;aa dS

 !
; ðB:19Þ
which effectively shows the same result given by Keuning (1971).
Eq. (B.19) still requires a relation between the current and the electrical potential since these quantities

are not independent once an external-measuring circuit is connected. If the electrodes are connected by a
contour with known complex conductivity
Y
ðmÞ

¼ Y R

ðmÞ
þi Y I

ðmÞ
; ðB:20Þ
then the induced current can be connected with electrical potential via
I
ðmÞ

¼ Y
ðmÞ
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ðmÞ

�x3¼�m̂h: ðB:21Þ
The substitution of Eq. (B.21) for u
ðmÞ

into Eq. (B.19) yields
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This completes the relation between the induced current and the deformation due to the motion of the

plate. For a special case of jixeS�33S=ðY
ðmÞ

hÞj � 1, Eq. (B.22) gives a simplified current-deformation relation
in the form
I
ðmÞ

¼ � ix
h

e�31h
2

2

Z
S
w;aa dS: ðB:23Þ
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Similarly, if the voltage is prescribed, Eq. (B.19) can be used for the calculation of the current induced by
the deflection with the opposite sign to the previous case following the electrical convention of Skilling
(1959). 4 From the integral equation (B.4), the current in the bimorph plate subject to a prescribed voltage
can be calculated as
4 E
I
ðmÞ

¼ IV
ðmÞ

þ ID
ðmÞ
; ðB:24Þ
where
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ðmÞ

¼ � ix
h
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33SV e; ID
ðmÞ

¼ � ix
h

e�31h
2

2

Z
S
w;aa dS: ðB:25Þ
Note that IV
ðmÞ

means the current due to applied voltage source and ID
ðmÞ

represents the current induced by the
deflection of the mth layer of the plate.
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